Ultrasound patterning technologies for studying vascular morphogenesis in 3D.

نویسندگان

  • Eric S Comeau
  • Denise C Hocking
  • Diane Dalecki
چکیده

Investigations in this report demonstrate the versatility of ultrasound-based patterning and imaging technologies for studying determinants of vascular morphogenesis in 3D environments. Forces associated with ultrasound standing wave fields (USWFs) were employed to non-invasively and volumetrically pattern endothelial cells within 3D collagen hydrogels. Patterned hydrogels were composed of parallel bands of endothelial cells located at nodal regions of the USWF and spaced at intervals equal to one half wavelength of the incident sound field. Acoustic parameters were adjusted to vary the spatial dimensions of the endothelial bands, and effects on microvessel morphogenesis were analyzed. High-frequency ultrasound imaging techniques were used to image and quantify the spacing, width and density of initial planar cell bands. Analysis of resultant microvessel networks showed that vessel width, orientation, density and branching activity were strongly influenced by the initial 3D organization of planar bands and, hence, could be controlled by acoustic parameters used for patterning. In summary, integration of USWF-patterning and high-frequency ultrasound imaging tools enabled fabrication of vascular constructs with defined microvessel size and orientation, providing insight into how spatial cues in 3D influence vascular morphogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An artificial blood vessel fabricated by 3D printing for pharmaceutical application

Objective(s): Cardiovascular diseases (CVDs) are the leading cause of mortality in the elderly. A common medical procedure for the treatment of CVDs is the replacement of the blocked or narrowed arteries, which is currently the optimal vascular transplant associated with autograft transplantation. In general, the saphenous veins and radial arteries in the mammary gland are considered to be the ...

متن کامل

Planar cell polarity genes frizzled4 and frizzled6 exert patterning influence on arterial vessel morphogenesis

Quantitative analysis of the vascular network anatomy is critical for the understanding of the vasculature structure and function. In this study, we have combined microcomputed tomography (microCT) and computational analysis to provide quantitative three-dimensional geometrical and topological characterization of the normal kidney vasculature, and to investigate how 2 core genes of the Wnt/plan...

متن کامل

Neural tube morphogenesis in synthetic 3D microenvironments.

Three-dimensional organoid constructs serve as increasingly widespread in vitro models for development and disease modeling. Current approaches to recreate morphogenetic processes in vitro rely on poorly controllable and ill-defined matrices, thereby largely overlooking the contribution of biochemical and biophysical extracellular matrix (ECM) factors in promoting multicellular growth and reorg...

متن کامل

Coupling intercellular molecular signalling with multicellular deformation for simulating three-dimensional tissue morphogenesis.

During morphogenesis, three-dimensional (3D) multicellular structures emerge from biochemical and mechanical interplays among cells. In particular, by organizing their gradient within tissues, the diffusible signalling molecules play an essential role in producing the spatio-temporal patterns of cell status such as the differentiation states. Notably, this biochemical patterning can be dynamica...

متن کامل

Whole-mount immunohistochemical analysis for embryonic limb skin vasculature: a model system to study vascular branching morphogenesis in embryo.

Whole-mount immunohistochemical analysis for imaging the entire vasculature is pivotal for understanding the cellular mechanisms of branching morphogenesis. We have developed the limb skin vasculature model to study vascular development in which a pre-existing primitive capillary plexus is reorganized into a hierarchically branched vascular network. Whole-mount confocal microscopy with multiple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 130 1  شماره 

صفحات  -

تاریخ انتشار 2017